首页 / 办公指南 / 机器学习的应用领域

图片名称

我们大学里面可以学的学科,其实还是非常单一的,而且大学里面的学科也不可能学得很复杂,毕竟要考虑到大家的学习能力、接受能力还有认知能力。但是有很多朋友们一直都在学习深造的路上,哪怕是一些比较复杂的学科,他们也是很愿意去尝试和学习的。机器学习,你们有没有听说过呢?它是一门多领域交叉的学科。现在就让我们福昕知翼的小编带大家好好的了解一番。 机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能核心,是使计算机具有智能的根本途径。机器学习的应用领域有哪些数据分析与挖掘“数据挖掘”和"数据分析”通常被相提并论,并在许多场合被认为是可以相互替代的术语。关于数据挖掘,已有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的.新颖的、潜在有用的最终可理解的模式的非平凡过程”,无论是数据分析还是数据挖掘,都是帮助人们收集、分析数据,使之成为信息,并做出判断,因此可以将这两项合称为数据分析与挖掘。数据分析与挖掘技术是机器学习算法和数据存取技术的结合,利用机器学习提供的统计分析、知识发现等手段分析海量数据,同时利用数据存取机制实现数据的高效读写。机器学习在数据分析与挖掘领域中拥有无可取代的地位,2012年Hadoop进军机器学习领域就是一个很好的例子。 模式识别模式识别起源于工程领域,而机器学习起源于计算机科学,这两个不同学科的结合带来了模式识别领域的调整和发展。模式识别研究主要集中在两个方面。(1)研究生物体(包括人)是如何感知对象的,属于认识科学的范畴。(2)在给定的任务下,如何用计算机实现模式识别的理论和方法,这些是机器学习的长项,也是机器学习研究的内容之一。模式识别的应用领域广泛,包括计算机视觉、医学图像分析、光学文字识别、自然语言处理、语音识别、手写识别、生物特征识别、文件分类、搜索引擎等,而这些领域也正是机器学习大展身手的舞台,因此模式识别与机器学习的关系越来越密切。在生物信息学上的应用随着基因组和其他测序项目的不断发展,生物信息学研究的重点正逐步从积累数据转移到如何解释这些数据。在未来,生物学的新发现将极大地依赖于我们在多个维度和不同尺度下对多样化的数据进行组合和关联的分析能力,而不再仅仅依赖于对传统领域的继续关注。序列数据将与结构和功能数据基因表达数据、生化反应通路数据表现型和临床数据等一系列数据相互集成。如此大量的数据,在生物信息的存储、获取、处理、浏览及可视化等方面,都对理论算法和软件的发展提出了迫切的需求。另外,由于基因组数据本身的复杂性也对理论算法和软件的发展提出了迫切的需求。而机器学习方法例如神经网络、遗传算法、决策树和支持向量机等正适合于处理这种数据量大、含有噪声并且缺乏统一理论的领域。 机器学习是什么意思?机器学习的应用领域有哪些?关于这些问题的答案,我们福昕知翼的小编都已经给大家讲解和分析过了哦,要是你们对于这门学科也是有着浓厚的兴趣的话,而且你们的学习能力也非常强的话,你们可以试着去接触这门学科,说不定会有意外的收获呢。