知翼- 一站式内容服务平台,将内容、服务和工具深度结合,切入学习、工作场景,提供一站式全生命周期的内容服务
微信公众号
函数是我们需要掌握的重要的课程,相信大家都在学校里学习到关于函数的知识,我们也经常通过练习来增加自己对函数的掌握能力,为了帮助大家一起来回顾下函数的相关知识点,福昕知翼的小编今天特意在下文为各位朋友们整理了关于函数的基本定义、函数的分类的详细内容,相信大家看完之后,会更好的回忆起之前所学习的函数的相关得到知识,那就一起看看吧。函数的基本定义函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。函数的分类函数一共有7种,分别是正比例函数、反比例函数、一次函数、二次函数、三角函数、三角函数、对数函数。1、正比例函数一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1.且k≠0)(简称f(x)),那么y就叫做x的正比例函数。 正比例函数属一次函数,但一次函数却不一定是正比例函数。正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0.即所谓"y轴上的截距"为零,则为正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数) 当K>0时(一三象限),K的绝对值越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大. 当K2、反比例函数如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。 因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。而y=k/x有时也被写成xy=k或y=k·x^(-1)。3、一次函数在某一个变化过程中,设有两个变量x和y,如果满足这样的关系:y=kx+b(k为一次项系数且k≠0.b为任意常数,),那么我们就说y是x的一次函数,其中x是自变量,y是因变量 (又称函数)。一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k≠0),y叫做x的正比例函数(direct proportion function)。4、二次函数二次函数表达式y=ax²+bx+c的定义是一个二次多项式,因为x的最高次数是2。如果令二次函数的值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。5、三角函数三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。总之,福昕知翼的小编今已经在上文为各位朋友们整理了关于函数的基本定义、函数的分类的详细内容,大家都看了几遍了呢?虽然只是关于函数的一些基本的内容,但是,也是我们必须要掌握的知识,希望大家能够好好的熟悉下上面的内容,不知道大家还有其他不懂的地方吗?